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CONJUGATE PROBLEMS OF NATURAL CONVECTION 

L. B. Gdalevich and V. E. Fertman UDC 536.25 

The increase in the number of reports on the investigation of the laws of convective 
motion and heat exchange under the conditions of thermal natural convection (NC) is due to 
the prevalence of the NC process in various engineering devices. The optimum conditions of 
operation of an electronic apparatus [i], of thermodiffusion fractionating columns [2], of 
apparatus for the sterilization of food products [3], and of cooling systems for various 
technological units [4-5] are determined to a large extent by NC. The problem of the bound- 
ary conditions at a solld--fluid interface is important in engineering calculations of a 
thermal process. 

The preliminary assignment of the boundary conditions (the temperature of a surface or 
the heat flux through an interface) is not always satisfactory. For example, in the presence 
of intense heat exchange it does not reflect the important degree of connection between the 
heat conduction in the solid and the convection in the fluid flowing over it. With transient 
heat exchange the law of time variation of the surface temperature is not known in advance. 
With steady heat exchange the assignment of the surfacetemperature is Justified only in the 
case of infinite thermal conductivity of the solid, whereas the true physical situation cor- 
responds to finite values of the thermal conductivity and wall thickness. Therefore, in 
thermal calculations and the construction of engineering devices for which the thermal condi- 
tions are characterized by a significant thermal interaction between the boundaries of the 
structure and the fluid, it is desirable to set up the thermal problem asa conjugateproblem; 
i.e., to seek a joint solution of the equations of fluid convection and the equation of heat 
conduction in the solid with equality of the previously unknown temperatures and heat fluxes 
at the phase interface [6]. 

The aim of the present survey is to discuss the methods, the specifics, and the prin- 
cipal results obtained in the solution of conjugate problems of NC. 

i. External Problems. Of the work on heat exchange during NC at a vertical wall we 
will dwell on the reports [7-11]. Zinnes [12] developed a method making it possible to 
solve by iteration the conjugate problem of two-dlmenslonal laminar NC at a thermally con- 
ducting plate (0~X~_I, -b/a~Y~0) with a heat source Gs(X) distributed arbitrarily 
over its surface (0~X~I, Y = 0) [7]. The condition of equality of the heat fluxes at 
the solid--fluid interface, 

ks OOs 00~ 
kf OY -- OY + Gs (x)" Y = O, O < X < ! , 

comprised the connection between the boundary-layer equations written in finite-difference 
form and the two-dimensional equation of heat conduction in the solid. 

The system was solved numerically by the method of successive approximations. Numerical 
and physical experiments performed on glass and ceramic plates with local ribbon heat sources 
showed that (Fig. i): i) When (ks/kf) § i heat removal through the plate is insignificant 
and NC makes the main contribution to the heat exchange, which can lead to local inversion 
of the heat flux; 2) when (ks/kf)~5000 the solld--fluid thermal interaction is close in 
character to the heat exchange of an isothermal vertical surface, so that when (ks/kf)~> 5000 
the solution of the conjugate problem of NC can be replaced by calculation of the heat ex- 
change of an isothermal surface; 3) in the region of (ks/k f) < 5000 one observes coupling be- 
tween the heat exchange in the solid and the boundary layer, which makes the conjugate state- 
ment of the NC problem desirable; 4) the assumption that the coefficient of heat exchange is 
constant is limited and one must allow for the prehistory of the flow, which is confirmed by 
the region of negative values of the local Nusselt number in experiments on glass plates 
(Fig. ib). 
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Fig. i. a) Effect of ratio of thermal conductivities on natural 
convection from a vertical plate; a: i) ks/k f = 5000; 2) 2500; 
3) ii00; 4) i; 5) 40; b: local Nusselt number [ceramic (I) and 
glass (II) plates with inclusion of a bottom heater]. 

Numerical methods are also effective in the solution of a class of problems on the heat 
conduction of a radiating plate heated at the base and the NC of a compressible fluid at its 
surface when the heat conduction in the plate is one-dimensional and the heat exchange in 
the boundary layer is two-dimensional (consistent boundary condition of the third kind) [8]. 
The system of equations was solved by the method of successive approximations. In each step 
the boundary-layer equations were replaced by a system of finite-difference equations which 
were solved by the trial-run method. The solution of the boundary-layer equations for some 
value of the wall temperature Os(~) was taken as the initial approximation, which made it 
possible to calculate the generalized coefficient of heat transfer (~0/3~)o, which was then 
introduced into the equation of heat conduction in the solid; and by solving it (also by the 
finite-difference method), the next value of Os(~) needed for thenext iterationwas obtained, 
and so forth, until a given value of the discrepancy was reached. Experiments conducted on 
a steel plate (660 x I00 x I0 mm, KhI8NIOT steel) with NC in air confirm the results of the 
numerical calculations (Pr = 0.7, Rax~5.109, hpl = 450-723 mm, solid: KhI8NIOT steel) that 
there is considerable lack of self-similarity of the velocity and temperature fields, a sharp 
decline in the generalized coefficient of heat transfer (3~/3~)o with height, and a con- 
siderable contribution of radiation (decisive in the upper part of the plate) to the heat 
exchange. 

Ke!leher and Yang [9], who used the best features of a method of analysis of conjugate 
heat exchange proposed by Perelman [13], obtained an exact analytical solution to the prob- 
lem of the heat exchange of a plate submerged in an incompressible fluid (0~x~=, --2L 
y~ 0) and heated by heat sources Q(x, y) arbitrarily distributed inside it and symmetrically 
cooled by NC. As in [13], following a solution by a Fourier transform of the Poisson equa- 
tion 72Ts = Q(x, y) the temperature distribution in the solid was expressed through the 
function p(x) = [~Ts(x , Y)/~Y]y=o, which is not known in advance. In particular, the tem- 
perature of the interface is 

Tw(x) - - (2 /n )  p ( z ) .  i n [ 1 - - e x p ( - - n ( x - t ~ z ) ) l d z _  i ' ( z _ x )  Q(z)dz -~-j(z--x) p(z )dz- -x  [Q(z) - -p(z)]dz .  
.r 

0 0 0 0 

in [13] the first integral was omitted, since the region of the solution is large x, whereas 
in [9] the region adjacent to the leading edge is also taken into account. The source 

K = O  
is a bounded analytical function as x + ~. The matching of the solution 

in the solid with the solution of the boundary-layer equations, obtained with the help of 
series of the Gertler type [14] and allowing for the nonisothermicity of the surface, deter- 
mines p(x): 

" kf ' (5,z--1)/4~ . 
P (X) == ( k-~s~ ) x Mh ~ 'U4 . 

k=O 
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The effect of the ratio (kf/ks) and the intensity of the internal sources on the heat ex- 
change is illustrated By a calculation for two values of (kf/ks) = 0.01 and 0.05 with Pr = 
I0, Qlx>1(x) E 0, Qo = 0, QI = QM = const, Qa ='-QM, Qk = 0(k > 2), QM =-104 and -106 . An 
increase in (kf/ks) with a constant source leads to a decrease in the temperature of the 
surface (Fig. 2a). The heat flux, which is not bounded at x = 0, decreases with an increase 
in x for some time (as in the case of an isothermal plate), but owing to the generation of 
heat in the solid it begins to grow again, having first passed through a minimum (Fig. 2b). 

On the basis of an analytical solution, Bal Krishnan [i0] made a graphic analysis of 
nonsteady heat exchange of a thin plate (-~x~ ~, --~_y~0) in contact with an in- 
compressible fluid (y~0; -~x~=). The development of NC at the wall produced a step- 
wise change at t = 0 in the heat flux at the free surface y = --l (or in the surface tempera- 
ture Tsiy=--Z ) . The Joint solution (with boundary conditions of the fourth kind) of the 
boundary-layer equations and the equation of heat conduction of the solid for small t was 
performed by a Laplace transform. The analytical expressions for the temperature and veloc- 
ity fields depend on the ratio (as/af) of the thermal diffusivities of the solid and fluid. 
An increase in (as/af) */a leads to an increase in the velocity field. 

Lock and Gunn [15] analyzed the problem of the heat conduction of a thin vertical fin 
with a profile ~ = ~R(X/m) m with NC of a nonmetallic fluid (Pr = ~) at its surface. The NC 
is analyzed in a boundary-layer approximation, which is possible on the assumption of a 
large relative elongation m/~R of the fin. Experiments show that an elongation sufficient 
for the neglect of the curvature and slope of the fin already occurs when m = 6~ R if the 
ratio of thermal conductivities is (ks/kf) >> I [15]. In the case of a nonisothermal sur- 
face under consideration, the use of an analog of a Lefevre transformation [16] which is ac- 
ceptable for Pr = = leads to neglect of the inertial terms and replacement of the boundary- 
layer equations by a system of ordinary differential equations independent of the Prandtl 
number. The equations of the system were solved by the Meksyn method [17] with subsequent 
calculation on a computer. As in [8], the coefficient of convective heat exchange calcu- 
lated on the basis of a self-similar solution for a power-law temperature distribution was 
introduced into the equation of heat conduction of the fin, while the temperature distribu- 
tion of the surface of the fin was sought in the form 8m = const (x/m) n, n > 0, which was 
achieved by matching the temperature fields in the fluid and solid. The results of experi- 
ments (on water and glycerin) and theoretical calculations (the series were cut off at the 
seventh term), which were in good agreement, show that: I) The effect of the Prandtl num- 
ber and the shape of the fin profile on the heat transfer is slight; 2) the heat transfer 
is actually determined by a single dimensionless complex, the matching parameter 

(ks 1( w }l ~gO~w3 ,),/4 

which allows for the combined effect of the ratio of thermal conductivities of the media 
(kf/ks), the relative elongation of the fin (m/~R), and the "motion potential" (@R = const 
and af is the coefficient of thermal conductivity of the fluid) 

Pr.Gr, P r ~ ,  
~OR~3/[a~(l+Pr)]= Pr~-Gr, Pr~O. 

3) the steepness of the temperature profile in the fluid grows with an increase in the ex- 
ponent n; 4) a dependence of the matching parameter z on the exponent n is found. 

The analysis of conjugate heat exchange with NC at the surface of a downward projecting 
fin submerged in an isothermal fluid [15] was extended by Lock and Ko [5] to rotating sys~ 
tems, where the mass force field is nonuniform, as is known. A tapering, radially oriented, 
thin fin of triangular shape immersed in air and rotating at a high velocity served as the 
model. The development of NC is connected with the transfer to the surrounding air of heat 
from the fin which is heated at the base. The non-self-similar system of boundary-layer 
equations was solv@d numerically through a transformation of the Blasias--Howarth type [18] 
(x = X/L, y = YRa*/4/L => ~ = ~x, n = [F,(~)/(Fa(~)/Y)*/~]y) and the introduction of the con- 
cept of "local self-similarity" [19]. The nonlinear one-dimensional equation of heat con- 
duction of the fin was integrated by the modified Runge-Kutta method. The Joining of the 
solutions in the boundary layer and the solid is analogous to that of [8]. The calculations 
showed that: i) The temperature and velocity fields depend on the dimensionless complex 
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Fig. 2. a) Variation of surface temperature of solid; 
b) variation of heat flux through surface of solid. 

= (~16 R) (kflks) oRa */4 [see [15] for (ml~R)]; 2) the dependence Nu/Ra I/~ = F(• y) holds 
for the calculation of the Nusselt number along the base of the fin (y = ~/R and R is the 
distance from the top of the fin to the center of rotation) and the dependence of Nu/Ra I/~ 
on y has a linear character within the limits of the calculations (• = 0.01, 0.I, 1.0, 3.0, 
5.0, i0.0; 0~_~y ~0.32); 3) the efficiency of the fin declines with an increase in the 
matching parameter • with the efficiency of a rotating fin being considerably higher than 
tile efficiency of a fixed fin [15]; 4) the departure of the temperature field from the self- 
similar case is small. 

The report of Lock and Ko [ii] is evidently the sole report devoted to the conjugate 
heat exchange of fluids separated by a thermally conducting partition with NC (the analogous 
problem in the case of forced convection has been studied by a number of authors [20-22]). 
According to the method proposed in [ii], the system of determining equations is reduced by 
a special transformation to a form convenient for the application of the method of local 
self-similarity [19]. The solutions depend on 

kfe { Raz ']b'4[ Pr~(l ',--pra) ]1/4 
a = - h f  I ~'-~al ] Pr l ( l+pr2)  

•  ks \ 1-?Pr 2 / 

The velocity and temperature distributions in the fluids and the temperature and heat-flux 
distributions in the partition are obtained numerically for the case when there is air at 
different temperatures on the two sides of the partition (Prl = Pr2 = 0.72, ~ = i). 

2. Internal Problems. Vu Zuy Quang [23] studied the effect of the finite thickness 
and finite thermal conductivity of the walls on heat exchange with NC in the case of the 
steady one-dimensional convection of an electrically conducting fluid filling a vertical 
channel (along 0y) 2~ wide with thermally conducting walls having a thickness h when a mag- 
netic field Bo = const is applied perpendicular to the walls and an alternating electric 
current flows along 0z (inductionless approximation, E z >> E z in). A numerical analysis 
made of the solutions of the system of MHD equations of the fourth kind at the interface re- 
vealed the effect on the heat exchange of the conjugate parameter ~ = (kf/ks).(h/Z), the 
parameter S characterizing the ratio of Joule heat to the heat transmitted by thermal con- 
ductivity, and the parameter n characterizing the ratio of the half-width of the channel to 
the thickness of the electrical skin layer. Thus, the intensification of convection and 
heat exchange which occurs is due to the allowance for the finite thermal conductivity and 
finite thickness of the walls. 

i) The case of S = 0 and ~ = 0 corresponds to NC in a vertical channel with constant 
and different wall temperatures. 2) The temperature and velocity increase with an increase 
in ~ when n § ~ and S is fixed; i.e., the use of the conjugation conditions leads to a de- 
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Fig. 3. Dependence of T on S with 
Q/(QI~=o) = 0.01 for different n. 
Curves I, 2, and 3 correspond to 
n - 0, i, and 5. 

crease in the heat transfer from the walls. Even with small S the convection is mainly due 
to the release of Joule heat. 3) When TI-I, 0.15~.S < i0, and n < i0, the convection ex- 
cited by the high-frequency electric current predominates over NC. 4) The dependences of 
on S with a ratio of heat fluxes Q/(QI~=o) = 0.01, obtained for different n (Fig. 3), in- 
dicate a region of the parameters (to the left of the curves in the graph) where the effect 
of the boundary conditions of the fourth kind on the heat exchange is small. 

Rotem [4] analyzed steady NC in the gap between two coaxial horizontal cylinders (R/r 
< =) infinitely long containing sources distributed uniformly through the volume of the inner 
cylinder (the core) pr concentrated linearly along its axis. Natural convection develops in 
the gap with any heating of the surface of the core, since the vector of the gravitational 
force forms an angle with the temperature gradient directed radially. The temperature and 
velocity fields were obtained in the form of asymptotic expansions by powers of the Grashof 
number. The form of the expansions was established in detail and corresponds to expansions 
of the Stokes type [24]. Convergence of the series is guaranteed up to Gr = 104 when Pr = i. 
The solution obtained was analyzed numerically (for different values of ks/kf, R/r, Gr, and 
Pr). The effect of conjugation appeared as follows: The isotherms which run from the liquid 
into the core experience a disruption in smoothness in passing through the phase interface 
(r = i). From the boundary condition of equality of fluxes 

it is clear that the bend in the isotherms at r = i is larger, the smaller the ratio ks/kf 
of coefficients of thermal conductivity. The isotherm corresponding to Of = 0 no longer co- 
incides with the contour of the core but penetrates into it. The concentricity of the core 
isotherms relative to the geometrical center is lost (Fig. 4). 

Lau and Rotem [25] obtained the solution of the conjugate problem of NC in the gap be- 
tween concentric conducting spheres (R/r < =) when the coefficient of thermal conductivity 
of the outer sphere is infinite while that of the inner sphere is finite. The solution was 
obtained in the form of binary series of powers of the Grashof and Prandtl numbers and was 
axisymmetric relative to the gravitational field. An analysis of the solution shows that 
the appearance of multivortex structures is eliminated within the region of convergence of 
the series. 

lqbal, Khatry, and Aggarwala [26] obtained a general solution by the variation method 
to the problem of the fully developed laminar mixed convection in a vertical channel of 
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Fig. 4. Isotherms (Gr - 2800, Pr - 0.72, ks/kf = i0). 
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arbitrary shape with heat sources uniformly distributed in a wall of constant thickness ~. 
The conditions for joining the solutions in the channel and the wall were assigned at all 
the boundaries and obtained from the assumption of equality of temperatures at the inner 
wall and writing the equations of heat balance for an element of the wall. The problem was 
reduced to a search for those values of V and ~ (the axial velocity and the temperature dif- 
ference of the wall) which provide for the steadiness of some functional which allows for 
the conjugate nature of the problem. The method of approximate analytical solution of con- 
jugate problems of this class proposed in [26] is very important, since the mathematical 
difficulties of obtaining an exact solution grow considerably with the condition of Joining 
the solutions along all the boundaries. 

The variation of the wall temperature and heat flux along the perimeter is determined 
by the conjugate parameter K = ~ks/Dhk f (D h is the hydraulic diameter), which expresses the 
ratio of the local Nusselt number to the Blot number. An almost constant wall temperature 
is established as K § = (for channels of square cross section ~ ~ 0 over the entire perim- 
eter when Ra = 103 and K = 20). As K § 0 the heat flux at the wall becomes constant over 
the perimeter. Calculations made for channels of rectangular cross section with ratios of 
the sides of I, 2, and 3 show that the effect of the parameter K on the Nusselt number grows 
with an increase in the ratio of the sides; NC and the conjugate parameter K can considerably 
reduce the asymmetry in the temperature distribution along the perimeter of the wall. 

3. Convective Instability. A systematic presentation of the results of the study of 
convective stability (including the conjugate statement) published up to 1971 is contained 
in [27]. Therefore, we will only discuss two reports which came out in recent years. 

Vu Zuy Quang [28] studied the stability of the equilibrium of a horizontal layer of 
electrically conducting fluid which is in a transverse magnetic field (Bo = const) and is 
confined by walls of finite thickness b s and finite thermal conductivity k s when the insta- 
bility is due to Joule heat release. The system of equations of small monotonic perturba- 
tions of equilibrium was solved by a variant of the Bubnov-Galerkin method and the thermal 
boundary conditions of dTf/dz = (Tf -- I)/~ at z = 0 and dTf/dz = --Tf/P at z = I were bor- 
rowed from [29]. It was established that the critical Rayleigh number Racr = Racr(a, Ha, ~, 
S) is based on AT = T~ -- Tz (T,,2 are the temperatures of the outer wall surfaces), where a 
is the wave number, Ha is the Hartmann number, ~ = kfbs/ksb f is the conjugation parameter, 
and S is the internal heating. The calculations show that an increase in ~ hardly changes 
Racr in the region of Ha = O, 3~S < i0, and ~ ~3. Because of Joule heat release a region 
of values of the parameters of the problem appears (Ha = 0, S ~I0, ~ > 3)where Racr < 0 
when boundary conditions of the fourth kind are used. With Ha # 0 and S fixed, Racr grows 
monotonically in proportion to ~ and Ha. The strong influence of the finite thickness and 
finite thermal conductivity of the walls on the heat exchange appears in the region of S~I0 
and P~3. 

Catton [30] studied the effect of different thicknesses and thermal conductivities of 
the side walls of a rectangular parallelepiped on the equilibrium stability of the fluid 
filling it when a constant temperature gradient directed vertically downward was maintained 
in it. Averaging of the three-dimensional equation of heat conduction over the thickness of 
the wall with allowance for boundary conditions of the fourth kind leads to a new thermal 
boundary condition. The eigenvalue problem obtained on the basis of the theory of stability 
(Ra is the eigenvalue) was solved by Galerkin's method. The calculations made for 0 < k s 

and ratios of the width of the cavity to its depth of from 1/3 to 8 reveal a dependence 
of Racr on the parameters C x = kfL/(ks~)x and Cy = kfL/(ks~)y (L is the height of the 
parallelepiped and ~ is the wall thickness) and the shape of the cross section. The param- 
eters C x and Cy can have a strong effect on Racr: A 20-fold increase in Racr was achieved 
through variations in C x and Cy for a certain shape of the cavity cross section. 

The use of numerical methods of solving the initial systems of differential equations 
in partial derivatives with the appropriate boundary conditions is evidently the most 
promising in studies of conjugate NC, which is indicated by the experience already accumu- 
lated in the solution of NC problems in a conjugate statement, which shows that the ex- 
penditures of computer time on the solution of a conjugate problem in a number of cases [5, 
7, 31] do not much exceed the time required for the solution of the corresponding noncon- 
jugate boundary-layer problem. 
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